Highly divisible triangular number | Project Euler | Problem #12

URL to the problem page: https://projecteuler.net/problem=12

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

Let us list the factors of the first seven triangle numbers:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that 28 is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?



#include <iostream>
using namespace std;

int main()
{
    long long i = 1, j, number = 0, counter = 1, a;
    while (true) {
        number = 0;
        counter = 0;
        for (j = 0; j <= i; j++) {
            number += j;
        }
        for (j = 2; j <= sqrt(number); j++) {
            a = number / j;
            if (number % a == 0) {
                counter++;
            }
        }
        counter *= 2;
        counter++;
        if (counter > 500) {
            cout << "Value of the first triangle number to have over five hundred divisors is  =  " << number << endl;
            break;
        }
        i++;
    }

Comments

My photo
Ercan Tomac
instagram.com/ercantomac